LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cu/Cu2O nanoparticles co-regulated carbon catalyst for alkaline Al-air batteries

Photo from wikipedia

Abstract Developing high-efficiency, inexpensive, and steady non-precious metal oxygen reduction reaction (ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery. Here, we have prepared the… Click to show full abstract

Abstract Developing high-efficiency, inexpensive, and steady non-precious metal oxygen reduction reaction (ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery. Here, we have prepared the Cu/Cu2O-NC catalyst with excellent ORR performance and high stability, due to the synergistic effect of Cu and Cu2O nanoparticles. The half-wave potential (∼0.8 V) and the limiting-current density (5.20 mA/cm2) of the Cu/Cu2O-NC are very close to those of the 20% Pt/C catalyst (0.82 V, 5.10 mA/cm2). Besides, it exhibits excellent performance with a maximal power density of 250 mW/cm2and a stable continuous discharge for more than 90 h in the Al-air battery test. The promoting effects of Cu2O towards Cu-based ORR catalysts are illustrated as follows: (i) Cu2O is the major ORR active site by the redox of Cu(II)/Cu(I), which provides excellent ORR activities; (ii) Cu can stabilize the location of Cu2O by assisting the electron transfer to Cu(II)/Cu(I) redox, which is conducive to the high stability of the catalyst. This work provides a useful strategy for enhancing the ORR performance of Cu-based catalysts

Keywords: catalyst; air; nanoparticles regulated; cu2o nanoparticles; regulated carbon

Journal Title: Chinese Chemical Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.