LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of 3D ordered needle-like polyaniline@hollow carbon nanofibers composites for flexible supercapacitors

Photo by hush52 from unsplash

Abstract Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity, fast charge/discharge process, along with long-cycling life. Herein, a poly(acrylonitrile-co-β-methylhydrogen itaconate) copolymer was… Click to show full abstract

Abstract Carbon nanofiber-based supercapacitors have broad prospects in powering wearable electronics owing to their high specific capacity, fast charge/discharge process, along with long-cycling life. Herein, a poly(acrylonitrile-co-β-methylhydrogen itaconate) copolymer was prepared and used to synthesize flexible hollow carbon nanofibers (HCNFs) via an electrospinning method without breaking after multiple bending. Subsequently, the inner and outer surfaces of HCNFs were evenly covered with ordered needle-like polyaniline (PANI) through in-situ polymerization methods to obtain three-dimensional flexible HCNFs/PANI composites, which exhibited a high capacity 1196.7 F/g at 1 A/g and good cycling stability (90.1% retention at 5 A/g after 3000 cycles). The symmetrical supercapacitor based on the HCNFs/PANI composites also delivered an outstanding electrochemical performance with high energy/power density (60.28 Wh/kg at 1000 W/kg) and superior cycling durability (90% capacitance retention after at 5 A/g 3000 cycles), which confirmed that the HCNFs/PANI composites had a wide application potential in flexible energy storage devices.

Keywords: ordered needle; like polyaniline; hollow carbon; carbon nanofibers; carbon; needle like

Journal Title: Chinese Chemical Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.