LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural insights of catalytic intermediates in dialumene based CO2 capture: Evidences from theoretical resonance Raman spectra

Photo from wikipedia

ABSTRACT CO2 capture is considered as one of the most ideal strategies for solving the environmental issues and against global warming. Recently, experimental evidence has suggested that aluminum double bond… Click to show full abstract

ABSTRACT CO2 capture is considered as one of the most ideal strategies for solving the environmental issues and against global warming. Recently, experimental evidence has suggested that aluminum double bond (dialumene) species can capture CO2 and further convert it into value-added products. However, the catalytic application of these species is still in its infancy. Both the dynamics mechanism of CO2 fixation and the detailed structures of catalytic intermediates are not well understood. In this work, we investigate the structure dependent resonance Raman (RR) signals for different reaction intermediates. Ab-initio simulations of spontaneous resonance Raman (spRR) and time-domain stimulated resonance Raman (stRR) give spectral signatures correlated to the existence of different intermediates during the CO2-dialumene binding process. The unique Raman vibronic features contain rich structural information with high temporal resolution, enabling to monitor the transient catalytic intermediates under reaction conditions. Our work shows that RR can be used to monitor intermediates during the dialumene based CO2 capture reaction. The spectral features not only provide insight into the structural information of intermediate species, but also allow a deeper understanding of the dynamical details of this kind of catalytic process.

Keywords: co2 capture; catalytic intermediates; raman; resonance raman

Journal Title: Chinese Chemical Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.