LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distinguishable multi-substance detection based on three-channel NIR fluorescent probe in physiology and pathology of living cells and zebrafish

Photo from wikipedia

Abstract Mitochondria is the main organelle for the production of reactive sulfur species (RSS), such as homocysteine (Hcy), cysteine (Cys), glutathione (GSH) and sulfur dioxide (SO2), etc. These compounds participate… Click to show full abstract

Abstract Mitochondria is the main organelle for the production of reactive sulfur species (RSS), such as homocysteine (Hcy), cysteine (Cys), glutathione (GSH) and sulfur dioxide (SO2), etc. These compounds participate in a large number of physiological processes and play an extremely important role in maintaining the balance of life systems. Abnormal concentration and metabolism are closely related to many diseases. Due to their similarities in chemical properties, it is challenging to develop a single fluorescent probe to distinguish them simultaneously. Here, we synthesized the probe PI-CO NBD with three fluorophores, NBD-Cl and benzopyranate as the reaction sites of GSH/Cys/Hcy and SO2, respectively. Three biothiols all could cleavage ether bond to release benzopyrylium and coumarin moiety, which emitted red and blue fluorescence, but Cys/Hcy also could do intramolecular rearrangement after nucleophilic substitution, resulting in yellow fluorescence. Thus the probe can distinguish Cys/Hcy and GSH. Subsequently, only SO2 could quench red fluorescence by adding C = C of benzopyrylium. The probe also could localize well in mitochondria by oxonium ion for all kinds of cells. The probe not only could detect above sulfur-containing active substances of intracellular and extracellular but also monitor the level of them under oxidative stress and apoptosis process in living cells and zebrafish.

Keywords: fluorescent probe; pathology; cells zebrafish; living cells; physiology

Journal Title: Chinese Chemical Letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.