Abstract Supramolecular coordination chemistry is currently a very popular topic in metallorganic chemistry and has a very large impact on a broad field of applications. More importantly, the invention of… Click to show full abstract
Abstract Supramolecular coordination chemistry is currently a very popular topic in metallorganic chemistry and has a very large impact on a broad field of applications. More importantly, the invention of STM has opened new doorways to study these concepts on surfaces. This review summarizes the recent progress on surface-confined metallosupramolecular engineering based on the supramolecular coordination chemistry, with the aid of STM. At the beginning, a discussion of metalloids, alkali metals, and alkaline earth metal-based metallosupramolecular engineering is conducted. Next, transition metal-based coordination chemistry on surfaces is discussed. Then, polygonal, double- and triple-decker structures based on rare-earth-metal coordination chemistry are presented. Based on these supramolecular structures, the dynamics of coordination as well as the formed supramolecules are discussed. In the end, the coordination chemistry, including stability of coordination bonds, organic molecules, and gas molecule adsorption is described. Throughout this review, the coordination structures, dynamics and reactivity have been emphasized, which are important current and future research themes.
               
Click one of the above tabs to view related content.