LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metal–organic frameworks for the chemical fixation of CO2 into cyclic carbonates

Photo from archive.org

Abstract Presently, we find a rapid pace of CO2 emission into the atmosphere causing major problems facing our planet. If no action is taken, it would have harmful consequences to… Click to show full abstract

Abstract Presently, we find a rapid pace of CO2 emission into the atmosphere causing major problems facing our planet. If no action is taken, it would have harmful consequences to humanity and the biosphere. More CO2 in the atmosphere will cause global warming. This will lead to climate upheavals disturbing the ecosystems, modification of the conditions and cycles of plant reproduction and numerous associated problems. Therefore, present CO2 content in the atmosphere should be drastically reduced to a much lower level on an urgent basis. Alternatively, CO2 represents an abundant C1 feedstock and its chemical utilization has caught the imagination of chemists in recent years. Thus, fixation of CO2 with epoxide to form cyclic carbonate (hereafter, CC) via cycloaddition reaction is significantly important and vigorously pursued in different laboratories around the world. This is because removal of CO2 takes place from the atmosphere and simultaneously it can be converted into value-added products. Metal organic frameworks (MOFs) have attracted enormous attention in recent years as potential systems for gas storage, separation, heterogeneous catalysis and so on, owing to their unique features such as designable architecture, controllable pore size, high surface area, permanent porosity, etc. In the present review, we discuss the recent progress made on catalytic conversion of CO2 to CCs by specially designed MOFs. It should be emphasized here that in the present review the literature survey is not exhaustive and we apologize for missing any important result in this review.

Keywords: frameworks chemical; metal organic; fixation co2; co2; organic frameworks

Journal Title: Coordination Chemistry Reviews
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.