LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modulation of interfacial charge dynamics of semiconductor heterostructures for advanced photocatalytic applications

Photo by bundo from unsplash

Abstract As a topic of intensive research interest for decades, photocatalysis using semiconductor heterostructures holds the potential to satisfy global energy demand, reduce greenhouse effect and accomplish environmental remediation. This… Click to show full abstract

Abstract As a topic of intensive research interest for decades, photocatalysis using semiconductor heterostructures holds the potential to satisfy global energy demand, reduce greenhouse effect and accomplish environmental remediation. This burgeoning technology has quickly become a high-profile emerging scientific and technological field, providing a solution to achieving sustainable development of renewables. However, critical challenges, such as inadequate solar photons absorption, mediocre charge transfer dynamics, poor surface reaction kinetics and lack of long-term stability, have hindered the widespread deployment of semiconductor photocatalysts. Interfacial charge dynamics is particularly relevant to the utility of photocatalysis because it dictates charge transfer and carrier utilization, the two complicated yet key processes involved in the photocatalytic reactions. The means to modulating charge dynamics and even manipulating carrier behavior may pave a new avenue for intelligent design of versatile photocatalysts for advanced applications. This review introduces the recent development on conceptual strategies and experimental approaches that can be exploited to modulating charge dynamics of semiconductor heterostructures for maximizing carrier utilization efficiency. New insights into the future advancement of photocatalysis technology based on the adoption of the proposed tactics are also discussed and summarized.

Keywords: dynamics semiconductor; semiconductor heterostructures; interfacial charge; charge; charge dynamics

Journal Title: Coordination Chemistry Reviews
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.