LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Splice-variant-specific effects of primary aldosteronism point mutations on human CaV3.2 calcium channels.

Photo from wikipedia

CaV3.2 calcium channels play important roles in both neural excitability and aldosterone secretion. Recent clinical studies found four germline mutations (S196 L, M1549I, V1951E and P2083 L) in CaV3.2 channels. All four… Click to show full abstract

CaV3.2 calcium channels play important roles in both neural excitability and aldosterone secretion. Recent clinical studies found four germline mutations (S196 L, M1549I, V1951E and P2083 L) in CaV3.2 channels. All four mutations caused primary aldosteronism (PA), while only the M1549I mutation resulted in obvious neural malfunctions besides PA. In human, there are two major CaV3.2 channel gene (CACNA1H) splice variants, either with or without exon 26. In this study, we tested the expression of the two CACNA1H splice variants in zona glomerulosa (ZG) cells of human adrenal cortex and the possibility that CaV3.2 (-26) and CaV3.2 (+26) channels have different functional responses to the four PA mutations. We found that human ZG cells only express long form CaV3.2(+26) channels. The M1549I mutation slowed the inactivation of CaV3.2(+26) more than 5 fold, and CaV3.2(-26) more than 2 fold. The S196 L, V1951E and P2083 L mutations accelerated channel recovery from inactivation for CaV3.2(+26), but not CaV3.2(-26) channels. All four mutations resulted in gain of function of CaV3.2(+26) channels, leading to overproduction of aldosterone. In conclusion, the four PA mutations caused more profound changes on CaV3.2 (+26) currents than on CaV3.2 (-26) currents, and except the M1549I mutation, the S196 L, V1951E and P2083 L have little effect on the electrophysiological properties of CaV3.2(-26) currents, which may partially explain the limitation of the phenotype associated with the V1951E, S196 L and P2083 L germline mutations to PA.

Keywords: splice; calcium channels; cav3 channels; cav3 calcium; cav3; four mutations

Journal Title: Cell calcium
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.