LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Basic and editing mechanisms underlying ion transport and regulation in NCX variants.

Photo from wikipedia

Structure-dynamic analysis of archaeal NCX (NCX_Mj) provided new insights into the underlying mechanisms of ion selectivity, ion-coupled alternating access, ion occlusion, and transport catalysis. This knowledge is relevant, not only… Click to show full abstract

Structure-dynamic analysis of archaeal NCX (NCX_Mj) provided new insights into the underlying mechanisms of ion selectivity, ion-coupled alternating access, ion occlusion, and transport catalysis. This knowledge is relevant, not only for prokaryotic and eukaryotic NCXs, but also for other families belonging to the superfamily of Ca2+/CA antiporters. In parallel with the ion transport mechanisms, the structure-dynamic determinants of regulatory CBD1 and CBD2 domains have been resolved according to which the Ca2+-induced allosteric signal is decoded at the two-domain interface and "secondarily" modified by a splicing segment at CBD2. The exon-dependent combinations within the splicing segment control the number of Ca2+ binding sites (from zero to three) at CBD2, as well as the Ca2+ binding affinity and Ca2+ off-rates at both CBDs. The exon-dependent combinations specifically rigidify the local segments at CBDs, yielding the Ca2+-dependent activation (through Ca2+ binding to CBD1) and Ca2+-dependent alleviation of Na+-induced inactivation (through Ca2+ binding with CBD2). The exon-dependent synergistic interactions between CBDs characteristically differ in NCX1 and NCX3, thereby underscoring the physiological relevance of structure-controlled shaping of ion-dependent regulation in tissue-specific NCX variants. How the ion-dependent regulatory modules operate in conjunction with other regulators (PIP2, palmitoylation, XIP, among the others) of NCX is an open question that remains to be determined.

Keywords: ion transport; ca2 binding; ion; ncx variants; ca2

Journal Title: Cell calcium
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.