LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Apparent calcium spark properties and fast-scanning 2D confocal imaging modalities.

Photo from wikipedia

Ca2+ sparks are instrumental to understand physiological and pathological Ca2+ signaling in the heart. High-speed two spatially dimensional (2D) confocal imaging (>120 Hz) enables acquisition of sparks with high-content information, however,… Click to show full abstract

Ca2+ sparks are instrumental to understand physiological and pathological Ca2+ signaling in the heart. High-speed two spatially dimensional (2D) confocal imaging (>120 Hz) enables acquisition of sparks with high-content information, however, owing to a wide variety of different acquisition modalities the question arises: how much they reflect the "true" Ca2+ spark properties. To address this issue, we compared a fast point and a 2D-array scanner equipped with a range of different detectors. As a quasi-standard biological sample, we employed Ca2+ sparks in permeabilized and intact mouse ventricular myocytes and utilized an unbiased, automatic Ca2+ spark analysis tool, iSpark. Data from the point scanner suffered from low pixel photon fluxes (PPF) concomitant with high Poissonian noise. Images from the 2D-array scanner displayed substantially increased PPF, lower Poissonian noise and almost 3-fold increased sign-to-noise ratios. Noteworthy, data from the 2D scanner suffered from considerable inter-pinhole crosstalk evident for the permeabilized cells. Spark properties, such as frequency, amplitude, decay time and spatial spread were distinctly different for any scanner/detector combination. Our study reveals that the apparent Ca2+ spark properties differ dependent on the particular recording modality and set-up employed, quantitatively.

Keywords: spark; scanner; spark properties; confocal imaging; ca2; calcium

Journal Title: Cell calcium
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.