LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zeolites as recyclable adsorbents/catalysts for biogas upgrading: Removal of octamethylcyclotetrasiloxane

Photo from archive.org

Abstract Natural and synthetic zeolites with different properties (porous structure, SiO 2 /Al 2 O 3 ratio, acidity and Fe-loading) were evaluated as adsorbents/catalysts for octamethylcyclotetrasiloxane (D4) removal in dynamic… Click to show full abstract

Abstract Natural and synthetic zeolites with different properties (porous structure, SiO 2 /Al 2 O 3 ratio, acidity and Fe-loading) were evaluated as adsorbents/catalysts for octamethylcyclotetrasiloxane (D4) removal in dynamic adsorption tests. BEA type zeolites, with high content of Lewis and Bronsted sites, promoted the catalytic D4 ring-opening leading on the formation of smaller α-ω-silanediols, which are narrower molecules able to diffuse into the channel system. Wet oxidation processes were used for the regeneration of a spent BEA zeolite, including ozonation and Fenton-like treatment. Both treatments were optimized to recover almost completely the D4 uptake of the iron-exchanged Fe-BEA in the first use. Thus, its feasibility to be reused was evaluated in successive adsorption/oxidation cycles, recovering up to 80% in at least three subsequent steps. However, in further cycles the accumulation of D4 and/or by-products led to a successive decline in the catalytic activity of the zeolites, hampering not only the capacity to transform D4 into lineal silanediols, thus reducing the adsorption capacity, but also the catalytic activity towards promoting Fenton-like reactions during regeneration.

Keywords: upgrading removal; adsorbents catalysts; biogas upgrading; catalysts biogas; zeolites recyclable; recyclable adsorbents

Journal Title: Chemical Engineering Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.