LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient production of hybrid bio-nanomaterials by continuous microchannel emulsification: Dye-doped SiO2 and Au-PLGA nanoparticles

Photo by austriannationallibrary from unsplash

Abstract A novel microfluidic system was designed to produce in a continuous manner hybrid nanomaterials using the microchannel double w/o/w emulsification technique. Double w/o/w nanoemulsions were produced combining two inter-digital… Click to show full abstract

Abstract A novel microfluidic system was designed to produce in a continuous manner hybrid nanomaterials using the microchannel double w/o/w emulsification technique. Double w/o/w nanoemulsions were produced combining two inter-digital micromixers that afford working in continuous flow and with a high reproducibility and control on the reaction conditions. High throughput production of two hybrid nanomaterials, dye-doped SiO 2 (4 mg/min) and Au-loaded poly(lactic-co-glycolic) acid (PLGA) (168 mg/min) nanoparticles, were achieved, showing the resulting nanomaterials excellent and reproducible optical properties and tunable loading. These hybrid nanomaterials could be potentially used in different biomedical applications. In addition, the microfluidic system designed for carrying out double emulsification enabled to decrease the particle size distribution of dye-doped SiO 2 nanoparticles (NPs) up to 20 nm and to improve the Au NPs loading efficiency in Au-loaded PLGA hybrid nanoparticles. The excellent control achieved in the Au NPs loading allowed tuning the payload on demand. Finally, the microfluidic system designed in this work overpasses the productivity described in previously published batch-type reactors, while assuring the same properties of the resulting hybrid nanomaterials.

Keywords: production; emulsification; hybrid nanomaterials; dye doped; plga

Journal Title: Chemical Engineering Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.