LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pattern formation in pulsed gas-solid fluidized beds – The role of granular solid mechanics

Photo from archive.org

Under certain conditions, gas-solid fluidized beds are known to develop a structured flow of bubbles when exposed to periodically pulsating air flows. In quasi-two-dimensional beds, periodically rising bubbles form a… Click to show full abstract

Under certain conditions, gas-solid fluidized beds are known to develop a structured flow of bubbles when exposed to periodically pulsating air flows. In quasi-two-dimensional beds, periodically rising bubbles form a triangular tessellation in the vertical plane. Bubble nucleation sites at the distributor plate alternate during each cycle. This pattern sets an excellent benchmark for fundamental studies of fluidization. Notably, most common Eulerian descriptions of granular flow do not yet capture this interplay between solid mechanics and fluid-solid momentum exchange, which we show to be instrumental to the dynamic rearrangement of bubbles in a pulsed bed. We report the first successful CFD simulations of structured bubble flows in a deep, quasi-2D geometry using a Eulerian-Lagrangian CFD-DEM framework. Numerical results are in quantitative agreement with experiments. The simulated dynamics reveal that the patterns emerge from the transition of the granular collective behavior between solid-like and fluid-like, which is an outcome of dynamical coupling between gas and particles. The simulated results point out the essential role of solid frictional stresses on inducing and maintaining the formation of bubble patterns. This underscores the value of investigating pulsation-induced patterns as a prime manifestation of the mesoscopic physics underpinning fluidization, and highlights the direction for improving current practices.

Keywords: solid mechanics; fluidized beds; gas; solid fluidized; gas solid; mechanics

Journal Title: Chemical Engineering Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.