LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microbial electrolytic disinfection process for highly efficient Escherichia coli inactivation

Photo by noahmatteo from unsplash

Abstract Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly… Click to show full abstract

Abstract Water quality deterioration caused by a wide variety of recalcitrant organics and pathogenic microorganisms has become a serious concern worldwide. Bio-electro-Fenton systems have been considered as cost-effective and highly efficient water treatment platform technology. While it has been extensively studied for recalcitrant organics removal, its application potential towards water disinfection (e.g., inactivation of pathogens) is still unknown. This study investigated the inactivation of Escherichia coli in a microbial electrolysis cell based bio-electro-Fenton system (renamed as microbial electrolytic-Fenton cell) with the aim to broad the application of microbial electrochemistry. Results showed that a 4-log reduction of Escherichia coli (107 to hundreds CFU/mL) was achieved with an external applied voltage of 0.2 V, 0.3 mM Fe2+ and cathodic pH of 3.0. However, non-notable inactivation was observed in the control experiments without external voltage or Fe2+ dose. The disinfection effect was enhanced when cathode air flow rate increased from 7 to 41 mL/min and was also in proportion to the increase of Fe2+ concentration from 0.15 to 0.45 mmol/mL. Fatal cell membrane destruction by OH was identified as one potential mechanism for disinfection. This study successfully demonstrated the feasibility of bio-electro-Fenton process for pathogens inactivation, which offers insight for the future development of sustainable, efficient, and cost-effective biological water treatment technology.

Keywords: microbial electrolytic; escherichia coli; disinfection; inactivation; highly efficient

Journal Title: Chemical Engineering Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.