LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation

Photo by ale_s_bianchi from unsplash

Abstract In this study, a sustainable visible light promoted photocatalytic route has been developed for mineralization of alachlor pesticide using CuS/BiFeO3 heterojunction materials. The heterojunctions were synthesized by a two-step… Click to show full abstract

Abstract In this study, a sustainable visible light promoted photocatalytic route has been developed for mineralization of alachlor pesticide using CuS/BiFeO3 heterojunction materials. The heterojunctions were synthesized by a two-step process and characterized using XRD, FESEM, HRTEM, XPS, FTIR, UV–Vis-DRS and PL techniques. Morphologically, the heterojunction materials consist of BiFeO3 nanoplates with high aspect ratio and CuS nanorods. The intimate contact between the two phases was ascertained from the HRTEM study. Optical property study suggested that these materials show excellent absorption in visible region with superior charge carrier separation characteristics compared to the individual components. The transient photocurrent measurement and I-V plots revealed high mobility of the excitons across grain boundary due to heterojunction formation. The band positions of the two components were aligned favourably for a cyclic movement of electrons and holes resulting in a type-II heterojunctions. The CuS/BiFeO3 materials efficiently catalyse the mineralization of alachlor pesticide under visible light illumination achieving >95% degradation within 60 min. The mechanism of alachlor degradation over the catalyst surface was elucidated using GCMS and radical scavenger experiments. The attractive features of the developed photocatalytic method are the use of renewable energy, low cost, high efficiency, stability and recyclability of the catalyst material.

Keywords: degradation; alachlor; visible light; cus bifeo3

Journal Title: Chemical Engineering Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.