LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Palladium supported on low-surface-area fiber-based materials for catalytic oxidation of volatile organic compounds

Photo by itfeelslikefilm from unsplash

Abstract Fiber-based palladium catalysts were synthesized via an ultrasonic-assisted impregnation method on ceramic and glass fiber supports pretreated by leaching with water, sulfuric acid and nitric acid, respectively. The as-prepared… Click to show full abstract

Abstract Fiber-based palladium catalysts were synthesized via an ultrasonic-assisted impregnation method on ceramic and glass fiber supports pretreated by leaching with water, sulfuric acid and nitric acid, respectively. The as-prepared catalysts were next tested for the catalytic combustion of benzene. The Pd-Ceramic fiber exhibited better activity than Pd-glass fiber in terms of benzene conversion and carbon dioxide yield, and 0.8 wt% Pd loading was the optimum loading amount. The prepared catalysts were characterized by FE-SEM, BET, XRD, XPS, TEM, in situ DRIFTS and TPD. The results indicated that a relatively large surface area, strong support acidity, well-dispersed Pd particles, and suitable redox and desorption properties all contributed to the good performance of ceramic-fiber-based catalysts. Our findings demonstrate that the Pd-Ceramic fiber catalyst is an effective candidate for application in elimination of volatile organic compounds.

Keywords: organic compounds; surface area; volatile organic; fiber based; fiber; palladium

Journal Title: Chemical Engineering Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.