LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ growth of amorphous Fe2O3 on 3D interconnected nitrogen-doped carbon nanofibers as high-performance anode materials for sodium-ion batteries

Photo by armandoascorve from unsplash

Abstract In this work, a novel porous amorphous Fe2O3/nitrogen-doped carbon composite as a promising anode material for sodium-ion batteries has been fabricated by in situ growing amorphous Fe2O3 on 3D… Click to show full abstract

Abstract In this work, a novel porous amorphous Fe2O3/nitrogen-doped carbon composite as a promising anode material for sodium-ion batteries has been fabricated by in situ growing amorphous Fe2O3 on 3D interconnected nitrogen-doped carbon nanofibers. The as-prepared composite exhibits superior sodium storage properties. It delivers a high reversible capacity of 408 mA h g−1 after 350 cycles at a current density of 100 mA g−1 and a good rate capability of 183 mA h g−1 at 3 A g−1. The excellent electrochemical performance is owing to the synergistic effects of the amorphous structure of Fe2O3 and the 3D interconnected nitrogen-doped carbon network with high nitrogen doping content (10 atom%), which do not only relieve the internal stress of the electrode and accommodate more electrochemical active sites for Na+ storage, but also buffer the volume changes of amorphous Fe2O3 as well as facilitate the electronic and ionic transportation during cycling.

Keywords: doped carbon; nitrogen doped; nitrogen; amorphous fe2o3

Journal Title: Chemical Engineering Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.