LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

γ-Radiolysis as a highly efficient green approach to the synthesis of metal nanoclusters: A review of mechanisms and applications

Photo by chatelp from unsplash

Abstract Over the past two decades, the radiosynthesis of metallic nanoclusters (MNCs) using γ-irradiation (γ-radiosynthesis) has presented a wealth of opportunities for the application of nanomaterials in areas such as… Click to show full abstract

Abstract Over the past two decades, the radiosynthesis of metallic nanoclusters (MNCs) using γ-irradiation (γ-radiosynthesis) has presented a wealth of opportunities for the application of nanomaterials in areas such as medicine, energy, catalysis, and sensors. Unlike conventional methods, this technique provides fully reduced and highly stable MNCs that are free from by-products or impurities. γ-Radiosynthesis has thus proven to be a clean and green approach for bulk fabrication of MNCs with tunable particle sizes and morphologies. More recently, the in-situ decoration of MNCs on support materials using γ-irradiation has attracted much attention due to the synergistic effect between MNCs and the underlying support. In this review, we discuss the current state of research into the mechanisms underlying the γ-radiosynthesis of supported and unsupported mono- and bi-metallic nanoclusters and summarize the use of MNCs in catalysis, sensing, biomedicine, and energy applications.

Keywords: efficient green; approach; green approach; radiolysis highly; highly efficient; approach synthesis

Journal Title: Chemical Engineering Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.