LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights into efficient removal and mechanism for ammonium from aqueous solution on tricalcium aluminate

Photo by ferhadd from unsplash

Abstract Ammonium (NH4+) has been causing severe environmental pollution while the development of material with high capacity for ammonium removal remains a challenge. Herein, the cement-based material tricalcium aluminate (C3A)… Click to show full abstract

Abstract Ammonium (NH4+) has been causing severe environmental pollution while the development of material with high capacity for ammonium removal remains a challenge. Herein, the cement-based material tricalcium aluminate (C3A) was employed to remove NH4+ from digested piggery wastewater. The conditions influencing the removal capacity were investigated, including contact time, initial ammonium concentration, temperature, dosage and initial co-existing phosphate concentration. The physicochemical structure of C3A and the resultant were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption isotherms. The maximum removal capacity of NH4+ by C3A was 155.4 mg·g−1 at 298 K. The characterization revealed that the resultant was CaAl-Cl-LDH. The hydroxyl groups and Al(OH)4− from the C3A hydration played an important role in ammonium removal. High alkalinity could enhance the removal capacity. This work presents an efficient solution for ammonium removal, thus providing new insight into the mechanism of cement-based materials for water pollutant removal.

Keywords: spectroscopy; removal; tricalcium aluminate; ammonium; capacity

Journal Title: Chemical Engineering Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.