LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-healing and recyclable biomass aerogel formed by electrostatic interaction

Photo from wikipedia

Abstract Achieving self-healing capacity in porous materials is highly attractive, but still remains a huge challenge. Here we disclosed a new strategy for the fabrication of self-healable biomass aerogels, which… Click to show full abstract

Abstract Achieving self-healing capacity in porous materials is highly attractive, but still remains a huge challenge. Here we disclosed a new strategy for the fabrication of self-healable biomass aerogels, which is achieved by assembling the positively charged chitosan (CS) and negatively charged itaconic acid (IA) in aqueous solution, followed by a freeze-drying process. Due to relatively strong electrostatic interaction and unique morphology, the aerogel shows outstanding mechanical property even at very low apparent density. More importantly, it possesses ultrafast self-healing ability at room temperature. Once the aerogel is cut apart, it can repair both its structure integrity and mechanical performance within 30 s at room temperature via wetting one fractured surface. After self-healing, its compression strength is almost twice the value of the original one. In addition, the aerogel can be completely dissolved and reshaped, thus displaying excellent recyclability of the materials. Since both CS and IA are derived from natural resources, this work provides a promising solution to the fabrication of self-healable biomass aerogels with both high-performance and sustainability.

Keywords: electrostatic interaction; biomass; self healing; aerogel; self

Journal Title: Chemical Engineering Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.