LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Membrane assembled from anti-fouling copper-zinc-tin-selenide nanocarambolas for solar-driven interfacial water evaporation

Photo from wikipedia

Abstract The anti-fouling copper-zinc-tin-selenide (CZTSe) nanocarambolas were synthesized and deposited on a hydrophilic filter membrane, as the full solar spectrum absorber and nanoporous vapor generator, for efficient and stable solar-driven… Click to show full abstract

Abstract The anti-fouling copper-zinc-tin-selenide (CZTSe) nanocarambolas were synthesized and deposited on a hydrophilic filter membrane, as the full solar spectrum absorber and nanoporous vapor generator, for efficient and stable solar-driven interfacial water evaporation. The CZTSe nanocarambolas assembled membrane based self-floatable device with excellent light-to-heat conversion, abundant nanochannels, anti-fouling property, timely water supply and low heat loss achieved a remarkable solar evaporation rate of 1.528 kg/m2 h and a solar-to-vapor conversion efficiency up to 86.4% under one Sun, and stable solar desalination over 30 days without decay. This assembled membrane showed an excellent salt-rejection ability and a potential application of long-term efficient, stable and safe solar water purification of seawater and wastewater, and practical freshwater production under natural conditions.

Keywords: water; membrane; copper zinc; fouling copper; anti fouling; evaporation

Journal Title: Chemical Engineering Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.