LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel hydroxyapatite-based bio-ceramic hollow fiber membrane derived from waste cow bone for textile wastewater treatment

Photo by ethanbodnar from unsplash

Abstract Industrial textile wastewater is toxic due to the presence of recalcitrant color pigments and poisonous heavy metals. In this study, the hydroxyapatite (HAp)-based bio-ceramic hollow fiber membranes (h-bio-CHFM) were… Click to show full abstract

Abstract Industrial textile wastewater is toxic due to the presence of recalcitrant color pigments and poisonous heavy metals. In this study, the hydroxyapatite (HAp)-based bio-ceramic hollow fiber membranes (h-bio-CHFM) were developed via the combined phase inversion and sintering technique. It was found that the properties of the developed h-bio-CHFMs were greatly affected by the HAp content of the ceramic suspension, and sintering temperature. The h-bio-CHFM with the sintering temperature of 1200 °C exhibited the long rod-shaped HAp particles and the smallest pore size (0.013 μm). High removals of color (99.9%), COD (80.1%), turbidity (99.4%) and conductivity (30.1%) were achieved using the h-bio-CHFM sintered at 1200 °C with stable high flux of 88.3 L/m2h. Remarkably, the h-bio-CHFM sintered in the temperature range of 1000–1200 °C also demonstrated excellent adsorption ability towards heavy metals with 100% removals. The results of this study show the potential of the h-bio-CHFM for the efficient industrial textile wastewater treatment applications.

Keywords: textile wastewater; based bio; bio chfm

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.