LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of KNaTiO3 as a novel high-temperature CO2 capturing material with fast sorption rate and high reversible sorption capacity

Photo by elevatebeer from unsplash

Abstract In addition to the previous well studied CaO, Li4SiO4, and Li2ZrO3, a new type of high-temperature CO2 capture material KNaTiO3 was revealed for the first time, which exhibited excellent… Click to show full abstract

Abstract In addition to the previous well studied CaO, Li4SiO4, and Li2ZrO3, a new type of high-temperature CO2 capture material KNaTiO3 was revealed for the first time, which exhibited excellent sorption performance, including a superior CO2 capture capacity and fast sorption rate under different concentrations of CO2. By decreasing the CO2 concentration from 100 to 20 vol%, the CO2 uptake only slightly decreased from 19.0 to 17.4 wt%, suggesting this sorbent is very promising for practical applications. Isothermal CO2 sorption and double exponential mode fitting demonstrated that the sorption-desorption equilibrium can be reached within 10 min, with the diffusion as the limiting step. Moreover, the good regeneration ability and prominent cycling stability of KNaTiO3 can be observed during 20 cycles at 700 °C with a pressure swing adsorption scheme. A mechanism and reaction process were proposed. This work represents a great breakthrough in the development of new high-temperature CO2 capturing materials.

Keywords: sorption; co2; knatio3; high temperature; temperature co2

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.