Abstract Novel binary cobalt nickel oxide Co1.29Ni1.71O4 hollowed-out spheres have been successfully synthesized via a facile hydrothermal method with a further calcination process. The phase, crystal structure, morphology, and electromagnetic… Click to show full abstract
Abstract Novel binary cobalt nickel oxide Co1.29Ni1.71O4 hollowed-out spheres have been successfully synthesized via a facile hydrothermal method with a further calcination process. The phase, crystal structure, morphology, and electromagnetic (EM) and EM wave absorption properties were characterized in detail. We find that as the temperature increases, the ionic mobility in the spinel structure will increase, leading to lattice disorder and an increase in the concentration of oxygen vacancy, which will improve the dielectric loss and EM wave absorption capacity of the material. The minimum reflection loss (RLmin) of the sample calcined at 500 °C reached up to −50.7 dB with a matching thickness (d) of 1.6 mm, and the corresponding effective absorption bandwidth (fE, RL
               
Click one of the above tabs to view related content.