LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solar light responsive bismuth doped titania with Ti3+ for efficient photocatalytic degradation of flumequine: Synergistic role of peroxymonosulfate

Photo from wikipedia

Abstract The present study is focused on the synthesis of a novel solar light responsive bismuth doped titania (Bi-TiO2) through a facile so-gel technique by applying various wt% of Bi.… Click to show full abstract

Abstract The present study is focused on the synthesis of a novel solar light responsive bismuth doped titania (Bi-TiO2) through a facile so-gel technique by applying various wt% of Bi. The as-synthesized Bi-TiO2 showed superior photocatalytic performance than un-doped TiO2 towards degradation of flumequine (FLU) under solar light irradiation. The as-synthesized material was thoroughly characterized to examine its structure, morphology and chemical states. The EPR analysis revealed the existence of Ti3+ ion and oxygen vacancy, which is created due to Bi-doping. The as-synthesized Bi-TiO2 with 5 wt% Bi (TBi5) showed excellent photocatalytic performance as compared to their counterparts. The photocatalytic activity of TBi5 was further improved when added with peroxymonosulfate (HSO5−) and increased with increasing [HSO5−]0. The mechanistic investigation and radical scavenging studies revealed that OH and SO4 − are involved in the degradation of FLU by the as-synthesized material. The bimolecular rate constants of OH and SO4 − were calculated to be 9.1 × 109 M−1s−1 and 8.5 × 109 M−1s−1, respectively. The photocatalytic performance of the as-synthesized TBi5 coupled with HSO5− under solar light irradiation towards degradation of FLU in Milli-Q water (MW), tape water (TW) and synthetic wastewater (SWW) was 92, 82 and 70% with kapp values of 0.093, 0.085 and 0.066 min−1, respectively. Furthermore, the degradation pathways of FLU were predicted on the basis of its degradation products (DPs). The high mineralization of FLU as well as the evaluation of non-toxic DPs suggests that solar light/TBi5/HSO5− is a promising advanced oxidation process for the future wastewater treatment applications.

Keywords: degradation; solar light; light responsive; bismuth doped; responsive bismuth; doped titania

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.