LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuous synthesis of 5-hydroxymethylfurfural using deep eutectic solvents and its kinetic study in microreactors

Photo from archive.org

Abstract A novel route to decompose glucose to 5-hydroxymethylfurfural (5-HMF) in microreactors with the use of deep eutectic solvents (DESs) was reported. For the catalytic mechanism, synergistic effects between quaternary… Click to show full abstract

Abstract A novel route to decompose glucose to 5-hydroxymethylfurfural (5-HMF) in microreactors with the use of deep eutectic solvents (DESs) was reported. For the catalytic mechanism, synergistic effects between quaternary ammonium ionic liquids (i.e., a component of DESs) and inorganic salts on the dehydration of glucose to 5-HMF were revealed. Under the optimal reaction conditions, CrCl3 with the tetraethyl ammonium chloride based DES was found to present the highest catalytic activity and the yield of 5-HMF reached 42% at 150 °C with only 3.64 min, which was more efficient compared with the conventional batch processing with the same or other catalytic systems. Moreover, the recycling of the CrCl3-[N2222]Cl/EG catalytic system was proven to be quite effective. Finally, a complete kinetic model was established in order to distinguish key parameters of the isomerization and its following step for the 5-HMF formation, and its predicted concentrations of glucose and 5-HMF agreed well with the experimental results. This work indicates great application potential of DESs with the combination of microreactor technology for the continuous catalytic transformation of biomass for the production of platform chemicals.

Keywords: using deep; hydroxymethylfurfural using; continuous synthesis; synthesis hydroxymethylfurfural; deep eutectic; eutectic solvents

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.