LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual-site activation enhanced photocatalytic removal of no with Au/CeO2

Photo from wikipedia

Abstract Photocatalytic technology provides an effective strategy for aerobic purification of dilute gaseous NO pollutant, but suffers from its low efficiency. In this study, we demonstrate that the bicomponent Au/CeO2… Click to show full abstract

Abstract Photocatalytic technology provides an effective strategy for aerobic purification of dilute gaseous NO pollutant, but suffers from its low efficiency. In this study, we demonstrate that the bicomponent Au/CeO2 photocatalyst possesses an enhanced photocatalytic NO removal performance under visible light irradiation, with a higher NO conversion efficiency (65%) and triple rate constant (0.1451 min−1) versus CeO2 (50%, 0.0448 min−1). Density function theory calculations and experimental results revealed that oxygen vacancies on the CeO2 component could favorably initiate the adsorption and activation of O2 to generate O2−, simultaneously, Au nanoparticles loaded on the CeO2 surface were active centers for adsorption and activation of NO to produce NO+ by plasmonic holes of the Au under visible light irradiation. Subsequently, these O2− and NO+ species generated via dual-site activation pathway on Au/CeO2 photocatalyst reacted spontaneously to generate the final NO3−, leading to enhanced photocatalytic removal of NO. This study sheds light on a dual-site induced photocatalytic NO oxidation and advances the design of effective air purification photocatalyst.

Keywords: photocatalytic removal; activation; dual site; ceo2; enhanced photocatalytic

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.