LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual-network nanoporous NiFe2O4/NiO composites for high performance Li-ion battery anodes

Photo by dulhiier from unsplash

Abstract The electrochemical properties of traditional graphite anodes cannot meet the current market requirements, which restrict the commercial applications of lithium-ion batteries (LIBs). Herein, we report a facile one-step dealloying… Click to show full abstract

Abstract The electrochemical properties of traditional graphite anodes cannot meet the current market requirements, which restrict the commercial applications of lithium-ion batteries (LIBs). Herein, we report a facile one-step dealloying strategy to fabricate dual-network nanoporous NiFe2O4/NiO composites. The composite presents excellent electrochemical performance, delivering a high reversible capacity of 1618 mAh g−1 at 200 mA g−1 for 100 cycles followed at 500 mA g−1 for 250 cycles. Even at 1000 mA g−1, a specific capacity of 416 mAh g−1 can be retained after 2000 cycles. The good electrochemical performance ascribes to the synergistic effect of two kinds of active materials (NiFe2O4 and NiO) and the unique dual-network porous structure, in which the plenty of pores can accommodate the volume change during the charge/discharge cycling while a mass of mesopores on the skeletons shorten the diffusion distances of ions and electrons. The employed strategy opens a door for the novel structural design of dealloyed anode materials, which may facilitate the further development of the dealloying technique for various application fields.

Keywords: nanoporous nife2o4; nife2o4 nio; network nanoporous; performance; dual network

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.