LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three-dimensional stretchable fabric-based electrode for supercapacitors prepared by electrostatic flocking

Photo from wikipedia

Abstract The three-dimensional vertical-array scaffolds can be constructed by electrostatic flocking with quite high efficiency and low cost for large-area applications. Herein, we have fabricated stretchable and highly conductive fabric… Click to show full abstract

Abstract The three-dimensional vertical-array scaffolds can be constructed by electrostatic flocking with quite high efficiency and low cost for large-area applications. Herein, we have fabricated stretchable and highly conductive fabric base resulting from the strong interaction between acid-functionalized carbon nanotubes (AC-MWNTs) and cationic cotton/spandex fabric. Then the electrostatic flocking was applied for the first time to implant vertical arrays of carbon fibers onto conductive fabrics, accompanied by deposition of nano-MnO2 to construct 3D stretchable fabric-based electrode with multistage array structure (MnO2@C-MC/S1-2). The composite binder-free electrode provided high conductivity and capacitive efficiency as well as the ideal electrochemical reversibility under tension. Furthermore, asymmetric solid-state supercapacitors were assembled using MnO2@C-MC/S1-2 as the positive electrode, C-MC/S1 with higher C1 loaded as the negative electrode, which exhibited maximum energy density of 1.70 mWh/cm2 (at a power density of 21.82 mW/cm2) and power density of 347.34 mW/cm2 (at an energy density of 0.91 mWh/cm2). The facile electrostatic flocking process with simplicity of operation and economic efficiency is both straightforward and cost-effective for fabricating three-dimensional electrodes for wearable energy storage applications.

Keywords: three dimensional; flocking; stretchable fabric; fabric based; electrostatic flocking

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.