LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced energy storage properties and stability of Sr(Sc0.5Nb0.5)O3 modified 0.65BaTiO3-0.35Bi0.5Na0.5TiO3 ceramics

Photo from wikipedia

Abstract With a view to the rapid development of pulsed power capacitors, the demands for higher energy density, energy efficiency, and stability have increased significantly. A large amount of research… Click to show full abstract

Abstract With a view to the rapid development of pulsed power capacitors, the demands for higher energy density, energy efficiency, and stability have increased significantly. A large amount of research has been devoted to the energy storage field of dielectric ceramics, however, scientific and effective strategy to design novel materials with excellent energy storage performance is still lacking. In this work, a new guideline was proposed that higher energy density and efficiency are easier obtained in crossover relaxor ferroelectrics, which is between normal ferroelectrics and relaxor ferroelectrics. Based on this theory, a series of lead-free (1-x)(0.65BaTiO3-0.35Bi0.5Na0.5TiO3)-xSr(Sc0.5Nb0.5)O3 ((1-x)BBNT-xSSN, x = 0, 0.05, 0.10, 0.15, 0.20) ceramics are designed and investigated. Optimal energy storage properties are achieved in 0.9BBNT-0.1SSN ceramic, with a large Wrec of 2.02 J/cm3 and a high η of 90.18% under a moderate electric field of 206 kV/cm. More importantly, both the Wrec and η of 0.9BBNT-0.1SSN ceramic show outstanding stability (including frequency, thermal, and cycle life stability) at 150 kV/cm, which is superior to other lead-free ceramics. These results demonstrate 0.9BBNT-0.1SSN ceramic is a promising candidate for practical energy storage applications.

Keywords: 65batio3 35bi0; energy; 5na0 5tio3; energy storage; 35bi0 5na0

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.