LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment of the capability of Fe and Al modified BEA zeolites to promote advanced oxidation processes in aqueous phase

Photo from wikipedia

Abstract Iron-containing zeolites were prepared using two-step postsynthesis and wet impregnation methods and characterized using conventional techniques. The materials were tested for production of hydroxyl radicals using N,N-dimethyl-p-nitrosoaniline (pNDA) as… Click to show full abstract

Abstract Iron-containing zeolites were prepared using two-step postsynthesis and wet impregnation methods and characterized using conventional techniques. The materials were tested for production of hydroxyl radicals using N,N-dimethyl-p-nitrosoaniline (pNDA) as radical scavenger and discoloration of Congo Red (CR) using advanced oxidation processes (AOPs). The characterization showed that the materials were morphologically homogeneous and had different iron amounts incorporated into the framework and extra-framework of the BEA structure. The pNDA bleaching curves suggested that FexHAlBEA is more effective for producing hydroxyl radicals because of the presence of higher amounts of octahedral Fe(III) in the extra-framework positions. A similar trend was found for CR discoloration. The use of hydrogen peroxide increased both hydroxyl radical generation and CR discoloration, which suggests that the Fe in the zeolites decomposed the oxidant and increased the production of free radicals. Fe-containing zeolites were found as interesting catalysts for AOPs to remove organic contaminants in water.

Keywords: assessment capability; modified bea; oxidation processes; advanced oxidation; capability modified

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.