LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intrinsically adhesive, highly sensitive and temperature tolerant flexible sensors based on double network organohydrogels

Photo from wikipedia

Abstract Hydrogel-based flexible sensors are of promising applications in various fields, but fabrication of such sensors with integrated high performances remains a challenge. In this work, flexible sensors (both strain… Click to show full abstract

Abstract Hydrogel-based flexible sensors are of promising applications in various fields, but fabrication of such sensors with integrated high performances remains a challenge. In this work, flexible sensors (both strain sensors and pressure sensors) with integrated high performances are fabricated utilizing double network (DN) organohydrogels. Because of the unique structure of DN organohydrogels, the flexible sensors exhibit intrinsic adhesion without introducing components that are often used to obtain adhesive hydrogels, such as polydopamine, nucleobases or proteins. In addition, outstanding temperature tolerance (−18 to 80 °C), high stretchability (>2000%), tensile strength (>300 kPa), self-healing ability (96.5%) and transparency (90%) are also achieved. Resistive-type strain sensors of DN organohydrogels achieve high gauge factor (GF = 2.58), low response time (0.18 s), large sensing range (0–1000%) and reversible sensing ability (>1000 cycles). Sandwich-shaped capacitive-type pressure sensors comprising DN organohydrogel electrodes with reliefs exhibit a high sensitivity of 2.14 kPa−1. Such flexible sensors can be applied in monitoring various human motions and subtle physiological activities and further promoted as wireless sensors on the basis of a Bluetooth protocol.

Keywords: intrinsically adhesive; temperature; double network; network organohydrogels; flexible sensors

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.