LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: Influence of the support

Photo by finleydesign from unsplash

Abstract Catalytic total oxidation of noxious volatile organic compounds (VOCs) is an important process to remove these compounds from the atmosphere. This is the first systematic study of the influence… Click to show full abstract

Abstract Catalytic total oxidation of noxious volatile organic compounds (VOCs) is an important process to remove these compounds from the atmosphere. This is the first systematic study of the influence of the support on the activity of iridium oxide supported catalysts for the total oxidation of VOCs. Iridium catalysts supported on titania, γ-alumina, silica and zeolites have been prepared using different calcination temperatures. The activity for the total oxidation of short chain alkanes and their mixtures has been evaluated and the physicochemical properties characterized by N2 adsorption, XRD, (HR)TEM, EDX, CO-Chemisorption, TPR, XPS and Raman spectroscopy. Both the calcination temperature and the nature of the support of iridium catalysts play an important role for the catalytic performance. Silica, ZSM-5 zeolites and titania are suitable supports for IrOx, in contrast with γ-alumina. A strong influence of the Lewis acidity of the support on the turnover frequency of the iridium oxide is found. Additionally, for a given support, the calcination temperature has an effect on the catalytic activity. A possible size effect is discussed. However, the major controlling factor is the nature of the support. Therefore, our results provide a guideline towards a rational design of more active IrOx catalysts for the total oxidation of VOCs.

Keywords: iridium catalysts; total oxidation; support; catalysts total

Journal Title: Chemical Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.