LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

N-doped C-CoS2@CoS2/MoS2 nano polyhedrons with hierarchical yolk-shelled structures as bifunctional catalysts for enhanced photovoltaics and hydrogen evolution

Photo by nate_dumlao from unsplash

Abstract The multicomponent composite nanomaterials with multilevel spatial structures have a broad application prospect in energy conversion. Herein, we rationally designed a novel strategy to synthesize hierarchical yolk-shelled N-doped carbon/CoS2/MoS2… Click to show full abstract

Abstract The multicomponent composite nanomaterials with multilevel spatial structures have a broad application prospect in energy conversion. Herein, we rationally designed a novel strategy to synthesize hierarchical yolk-shelled N-doped carbon/CoS2/MoS2 nano polyhedrons (NC-CoS2@CoS2/MoS2 YSPs) as bifunctional catalysts for dye-sensitized solar cells (DSSCs) and hydrogen evolution reactions (HERs). NC-CoS2@CoS2/MoS2 YSPs were prepared by ion-exchange between zeolitic imidazolate framework-67 (ZIF-67) and (NH4)2MoS4 with a subsequent sulfuration reaction under an annealing treatment. Benefiting from the unique yolk-shelled architecture, the obtained NC-CoS2@CoS2/MoS2 YSPs had enough internal clearance for both accommodating electrolyte and loading abundant active sites. In addition, the introduction of N and C elements greatly improved the activity and electroconductibility of the catalysts. As a result, the DSSC based on NC-CoS2@CoS2/MoS2 YSPs exhibited a superior power conversion efficiency of 9.54%, which was apparently higher than that of Pt (8.19%). Furthermore, a low onset potential of 44.5 mV and a small Tafel slope of 64.6 mV dec–1 were achieved by this catalyst for HER in 0.5 M H2SO4. The present approach affords a new idea for the design of yolk-shelled nanomaterials and can be extended to synthesize other catalysts to substitute Pt-based materials in different energy conversion fields.

Keywords: cos2 mos2; mos2; yolk shelled; cos2 cos2

Journal Title: Chemical Engineering Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.