LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Perovskite-type LaMn1-xBxO3+δ (B = Fe, Co and Ni) as oxygen carriers for chemical looping steam methane reforming

Photo by enginakyurt from unsplash

Abstract Chemical looping steam methane reforming (CLSMR) is capable of accomplishing both methane reforming and hydrogen generation, and the oxygen carrier is a key issue for CLSMR. In this work,… Click to show full abstract

Abstract Chemical looping steam methane reforming (CLSMR) is capable of accomplishing both methane reforming and hydrogen generation, and the oxygen carrier is a key issue for CLSMR. In this work, LaMn1-xBxO3+δ (B = Fe, Co and Ni, x = 0.1, 0.2 and 0.3) perovskites were investigated as oxygen carriers for CLSMR in a fixed bed system. The test results showed that the doping of Fe, Co and Ni improved the oxygen release rate of LaMnO3+δ and the improvement effect was in accordance with the order of Ni > Co > Fe, since the activation of methane molecule on the surface and the conduction of oxygen ion in the bulk of oxygen carrier particles were accelerated due to the evolution of perovskite structure, the addition of surface active sites and the formation of oxygen vacancies. The substitution of Fe, CO and Ni also increased the oxygen release amount, the CO selectivity and the hydrogen yield. No carbon formed on LaMnO3+δ and LaMn1-xFexO3+δ in single tests and carbon deposition did not occur on LaMnO3+δ, LaMn0.7Fe0.3O3+δ and LaMn0.8Co0.2O3+δ in the cyclic tests with short reduction stage, leading to the generation of high-quality syngas with the H2/CO ratio of 2 and pure hydrogen. Carbon deposition appeared on the LaMn0.9Ni0.1O3+δ oxygen carrier in the cyclic tests due to the separation of part of Ni out of the perovskite structure. Considering the oxygen release rate, the yield of syngas and hydrogen as well as carbon deposition, it is deduced that LaMn0.7Fe0.3O3+δ and LaMn0.8Co0.2O3+δ could be used as desirable oxygen carriers for cyclic CLSMR.

Keywords: oxygen carriers; methane reforming; lamn1; methane; oxygen; chemical looping

Journal Title: Chemical Engineering Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.