LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomic layer deposition-assisted fabrication of 3D Co-doped carbon framework for sensitive enzyme-free lactic acid sensor

Photo from wikipedia

Abstract As an important biomaterial, lactic acid (LA) widely exists in human blood and sweat. The development of enzyme-free LA sensors with high-sensitivity and low-cost remains a challenge. We present… Click to show full abstract

Abstract As an important biomaterial, lactic acid (LA) widely exists in human blood and sweat. The development of enzyme-free LA sensors with high-sensitivity and low-cost remains a challenge. We present here a structure of Co-doped porous carbon film derived from zeolitic imidazolate framework-67 (ZIF-67) on 3D carbon frameworks through a pyrolysis process. The conformal coating of ZIF-67 film is realized by a combination of gas-phase and liquid phase growths with the assistance of an induction step from atomic layer deposited-ZnO nanomembrane. In the resultant hierarchical structure with large surface area, Co-doped porous carbon film is closely stacked and firmly attached to carbon skeleton to form Co-doped N-containing carbon framework (Co-NCF). Therein, the Co-doped porous carbon provides catalytic Co nanoparticle, while the carbon skeleton bridges the individual carbon nanoparticle to form a conductive pathway. When adopted as an enzyme-free LA sensor, the Co-NCF composite exhibits excellent electrochemical sensing property in terms of an ultrahigh sensitivity of 1108 μA mM-1cm-2 at a liner range from 0.1 to 1 mM with a limit of detection of 13.7 μM. This work, therefore, presents an efficient strategy to prepare porous carbon structures toward new electrode materials in promising biomedicine systems.

Keywords: enzyme free; lactic acid; porous carbon; atomic layer; carbon; framework

Journal Title: Chemical Engineering Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.