Abstract Surface and interface engineering represents a powerful strategy for photocatalytic reduction of soluble hexavalent uranium (U(VI)) into insoluble tetravalent uranium (U(IV)). Herein, we fabricated surface oxidized tin disulfide nanosheets… Click to show full abstract
Abstract Surface and interface engineering represents a powerful strategy for photocatalytic reduction of soluble hexavalent uranium (U(VI)) into insoluble tetravalent uranium (U(IV)). Herein, we fabricated surface oxidized tin disulfide nanosheets (O-SnS2) on tellurium nanowires (Te@O-SnS2) as highly efficient and stable photocatalysts for U(VI) removal from wastewater. In this system, the Te nanowires increased the surface negative charge and resulted in the injection of hot electrons into O-SnS2 nanosheets, which facilitated the binding and reduction of U(IV) on the abundant surface defects of in O-SnS2. Under the irradiation of simulated sunlight, the removal efficiency toward U(VI) by Te@O-SnS2 reached 97.3% in 60 min with the initial U(VI) concentration of 8 mg/L. Additionally, the maximum extraction capacity of U(VI) by Te@O-SnS2 reached 704.8 mg/g at the initial U(VI) concentration of 200 mg/L. Furthermore, the Te@O-SnS2 exhibited remarkable resistence ability for the interfering ions and a U(VI) removal efficiency > 88.4% over a wide range of pH, and maintained a high U(VI) removal efficiency (>92%) during cycle tests at pH 4.8.
               
Click one of the above tabs to view related content.