LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-performance perovskite solar cells based on dopant-free hole-transporting material fabricated by a thermal-assisted blade-coating method with efficiency exceeding 21%

Photo from wikipedia

Abstract As the performance in terms of efficiency and device stability of perovskite solar cells (PSCs) has made rapid progress in a short period of time, the upscaling of PSCs… Click to show full abstract

Abstract As the performance in terms of efficiency and device stability of perovskite solar cells (PSCs) has made rapid progress in a short period of time, the upscaling of PSCs becomes an important issue for massive commercial applications, where the cost of device manufacturing is a determining factor for wide spread uses. Device fabrication by printing technique is one such low-cost process for large scale preparation. However, one of the reasons limiting the progress of a fully printed PSCs is the lack of appropriate hole-transporting materials (HTMs) that can be printed. Herein, a new donor–acceptor-donor (D-A-D) type hole-transporting material with 4-dicyanomethylene-4H-cyclopenta[2,1-b;3,4-b’]dithiophene (diCN-CPDT) core tethered with two bis(alkoxy)diphenylaminocarbazole periphery groups, namely CB, was synthesized and applied as dopant-free HTM in fully printed PSCs by thermal-assisted blade-coating (TABC) method. The PSCs fabricated by fully scalable processes based on dopant-free CB as HTM exhibited an impressive power conversion efficiency (PCE) up to 21.09%, which is higher than that of devices with doped 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene (spiro-OMeTAD) (14.28%) under the same fabricating condition. Furthermore, the all TABC process is demonstrated to produce an area of 10 cm × 10 cm for the devices except for electrode with an average PCE of 19.68%. Additionally, the TABC-based dopant-free CB-based PSCs exhibited significantly improved long-term stability, retaining more than 94% PCE after 500 h compared to that using doped spiro-OMeTAD under a relative humidity of ~50%. This result demonstrated that the newly developed CB is a promising candidate HTM for high-performance fully printable PSCs.

Keywords: performance; dopant free; based dopant; hole transporting; efficiency

Journal Title: Chemical Engineering Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.