LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron shuttles enhance phenanthrene removal in constructed wetlands filled with manganese oxides-coated sands

Photo by usgs from unsplash

Abstract Mn oxides could realize persistent organic pollutants (POPs) removal through the cycle of Mn between Mn(II) and biogenic Mn oxides in constructed wetlands (CWs) filled with Mn oxides. However,… Click to show full abstract

Abstract Mn oxides could realize persistent organic pollutants (POPs) removal through the cycle of Mn between Mn(II) and biogenic Mn oxides in constructed wetlands (CWs) filled with Mn oxides. However, the inefficient cycle of Mn caused by the limited oxidation ability of Mn oxides inhibited its effective degradation of POPs. Ruthenium (Ru) and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS) could act as electron shuttles in catalytic Mn oxides oxidation process. In this study, phenanthrene (PHE) was selected as a typical POP and biochar (BC) supported Ru (Ru/BC) and ABTS (ABTS/BC) were induced in CWs with Mn oxides (birnessite). The removal efficiencies of PHE in CWs with Ru/BC and ABTS/BC reached 94.61% and 95.51%, higher than the control (79.91%). ABTS performed best for enhancing Mn cycle based on the results of highest oxidation removal capacity and relative abundance of Mn-oxidizing bacteria. What’s more, the addition of Ru/BC contributed to the best adsorption ability and highest relative abundance of PHE degrading bacteria.

Keywords: electron shuttles; enhance phenanthrene; constructed wetlands; shuttles enhance; phenanthrene removal

Journal Title: Chemical Engineering Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.