LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CO2 absorption mechanism in aqueous ternary solutions of alkanolamines: Experimental and thermodynamic modeling approaches

Photo from wikipedia

Abstract The absorption mechanism of CO2 in an aqueous solution containing three alkanolamines was analyzed experimentally and theoretically. The vapor–liquid equilibrium of a CO2–monoethanolamine (MEA)–diisopropanolamine (DIPA)–2-amino-2-methyl-propanol (AMP)–H2O system was evaluated… Click to show full abstract

Abstract The absorption mechanism of CO2 in an aqueous solution containing three alkanolamines was analyzed experimentally and theoretically. The vapor–liquid equilibrium of a CO2–monoethanolamine (MEA)–diisopropanolamine (DIPA)–2-amino-2-methyl-propanol (AMP)–H2O system was evaluated experimentally over a wide temperature range (323.15–393.15 K) at several MEA:DIPA:AMP:H2O blending ratios (15:10:5:70, 10:10:10:70, 7.5:7.5:15:70, and 5:15:10:70 wt%). The successive substitution method was used to calculate the concentrations of five molecules (CO2, MEA, DIPA, AMP, and H2O) and nine electrolytes (four cations and five anions) in the liquid phase by solving eight equilibrium equations, four mass balance equations, and one charge balance equation. The Deshmukh–Mather model, which is based on an activity coefficient approach, and the fugacity coefficient model were used to evaluate the nonideality of the liquid and vapor phases, respectively. Thereafter, the effect of the MEA:DIPA:AMP blending ratio was evaluated using the triangular diagrams of the carbamate, bicarbonate and carbonate molar fractions in liquid phase, CO2 loading ratio, CO2 cyclic capacity, and heat of CO2 absorption.

Keywords: co2; co2 absorption; absorption mechanism; absorption; amp h2o

Journal Title: Chemical Engineering Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.