LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interface modulation of chiral PPy/Fe3O4 planar microhelixes to achieve electric/magnetic-coupling and wide-band microwave absorption

Photo by kellysikkema from unsplash

Abstract Adjusting the heterogeneous dielectric/magnetic interfaces have been affirmed to be an impactful strategy for obtaining superior electromagnetic wave absorbing (EMWA) materials. Herein, PPy planar microhelixes anchored with Fe3O4 nanoparticles… Click to show full abstract

Abstract Adjusting the heterogeneous dielectric/magnetic interfaces have been affirmed to be an impactful strategy for obtaining superior electromagnetic wave absorbing (EMWA) materials. Herein, PPy planar microhelixes anchored with Fe3O4 nanoparticles were constructed via a simple chemical oxypolymerization coupled with a solvothermal method. Kinetic factors (i.e., H2O volume and Fe3+ concentration) can be easily used to adjust PPy/Fe3O4 dielectric/magnetic interfaces by controlling the size and content of Fe3O4 nanoparticles in an exquisitely designed continuously adjusted process. The interface modulation not only forms superb impedance matching and significant electric/magnetic-coupling effects, but also tunes the conduction loss/polarization loss balance, beneficial to the excellent absorption performance. Interestingly, the prepared PPy/Fe3O4 planar microhelixes deliver the best EMWA performance compared with the other PPy-based absorbing materials reported so far, with the lowest reflection loss of −45.48 dB and the widest effective bandwidth of 10.24 GHz. The strategies for adjusting magnetic/electric properties and synthesizing chiral absorbers are very instructive for the development of high-performance EMW materials and devices.

Keywords: electric magnetic; fe3o4; ppy fe3o4; interface modulation; planar microhelixes

Journal Title: Chemical Engineering Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.