LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SUMOylation of MCL1 protein enhances its stability by regulating the ubiquitin-proteasome pathway.

Photo from wikipedia

In cancers, apoptosis evasion through dysregulation of pro-apoptotic and anti-apoptotic intracellular signals is a recurring event. Accordingly, selective inhibition of specific proteins represents an exciting therapeutic opportunity. Myeloid cell leukemia… Click to show full abstract

In cancers, apoptosis evasion through dysregulation of pro-apoptotic and anti-apoptotic intracellular signals is a recurring event. Accordingly, selective inhibition of specific proteins represents an exciting therapeutic opportunity. Myeloid cell leukemia 1 (MCL1) is an anti-apoptotic protein of the BCL-2 family, which is overexpressed in many cancers. Here, we demonstrate that MCL1 can be modified by the small ubiquitin-like modifier (SUMO) at K234 and K238 sites. The SUMOylation of MCL1 can improve its stability by inhibiting the MCL1 ubiquitin-proteasome pathway mediated by the Tripartite motif-containing 11 (TRIM11, a novel MCL1 ubiquitin E3 ligase that we identify in this study). Moreover, SUMOylation of MCL1 increases the proliferation of cancer cells by inhibiting apoptosis. These results suggest that the SUMOylation of MCL1 may play a significant role in the regulation of its function.

Keywords: protein; sumoylation mcl1; proteasome pathway; mcl1; ubiquitin proteasome

Journal Title: Cellular signalling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.