LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The 14-3-3 protein is an essential component of cyclic AMP signaling for regulation of chemotaxis and development in Dictyostelium.

Photo from wikipedia

The evolutionarily-conserved 14-3-3 proteins regulate many cellular processes through binding to various phosphorylated targets in eukaryotes. It first appears in Dictyostelium, however its role in this organism is poorly understood.… Click to show full abstract

The evolutionarily-conserved 14-3-3 proteins regulate many cellular processes through binding to various phosphorylated targets in eukaryotes. It first appears in Dictyostelium, however its role in this organism is poorly understood. Here we show that down-regulation of the 14-3-3 impairs chemotaxis and causes multiple-tip formation in Dictyostelium. Mechanistically, the 14-3-3 is a critical component of cyclic AMP (cAMP) signaling and binds to nearly a hundred of proteins in Dictyostelium, including a number of evolutionarily-conserved proteins. 14-3-3 - interaction with its targets is up-regulated in response to developmental cues/regulators including starvation, osmotic stress and cAMP. cAMP stimulates 14-3-3 - binding to phospho-Ser431 on a guanine nucleotide exchange factor Gef-Q. Interestingly, overexpression of Gef-QSer431Ala mutant but not wild-type Gef-Q protein causes a multiple-tip phenotype in Dictyostelium, which partially resembles phenotypes of the 14-3-3 - deficient mutant. Collectively, these data demonstrate that the 14-3-3 plays an important role in Dictyostelium and may help to deepen our understanding of the evolution of 14-3-3 - interactomes in eukaryotes.

Keywords: dictyostelium; cyclic amp; component cyclic; regulation

Journal Title: Cellular signalling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.