Phytohormones not only orchestrate intrinsic developmental programs from germination to senescence but also regulate environmental inputs through complex signalling pathways. Despite building an own signalling network, hormones mutually contribute several… Click to show full abstract
Phytohormones not only orchestrate intrinsic developmental programs from germination to senescence but also regulate environmental inputs through complex signalling pathways. Despite building an own signalling network, hormones mutually contribute several signalling systems, which are also essential for plant growth and development, defense, and responses to abiotic stresses. One of such important signalling cascades is G-proteins, which act as critical regulators of a wide range of fundamental cellular processes by transducing receptor signals to the intracellular environment. G proteins are composed of α, β, and γ subunits, and the molecular switching between active and inactive conformation of Gα controls the signalling cycle. The active GTP bound Gα and freed Gβγ have both independent and tightly coordinated roles in the regulation of effector molecules, thereby modulating multiple responses, including hormonal responses. Therefore, an interplay of hormones with G-proteins fine-tunes multiple biological processes of plants; however, their molecular mechanisms are largely unknown. Functional characterization of hormone biosynthesis, perception, and signalling components, as well as identification of few effector molecules of G-proteins and their interaction networks, reduces the complexity of the hormonal signalling networks related to G-proteins. In this review, we highlight a valuable insight into the mechanisms of how the G-protein signalling cascades connect with hormonal responses to regulate increased developmental flexibility as well as remarkable plasticity of plants.
               
Click one of the above tabs to view related content.