LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rotaviral nonstructural protein 5 (NSP5) promotes proteasomal degradation of up-frameshift protein 1 (UPF1), a principal mediator of nonsense-mediated mRNA decay (NMD) pathway, to facilitate infection.

Photo from wikipedia

Nonsense-mediated mRNA decay (NMD), a cellular RNA quality system, has been shown to be an ancestral form of cellular antiviral response that can restrict viral infection by targeting viral RNA… Click to show full abstract

Nonsense-mediated mRNA decay (NMD), a cellular RNA quality system, has been shown to be an ancestral form of cellular antiviral response that can restrict viral infection by targeting viral RNA for degradation or other various mechanisms. In support to this hypothesis, emerging evidences unraveled that viruses have evolved numerous mechanisms to circumvent or modulate the NMD pathway to ensure unhindered replication within the host cell. In this study, we investigated the potential interplay between the cellular NMD pathway and rotavirus (RV). Our data suggested that rotavirus infection resulted in global inhibition of NMD pathway by down regulating the expression of UPF1 in a strain independent manner. UPF1 expression was found to be regulated at the post-transcriptional level by ubiquitin-proteasome mediated degradation pathway. Subsequent studies revealed rotaviral non-structural protein 5 (NSP5) associates with UPF1 and promotes its cullin-dependent proteasome mediated degradation. Furthermore, ectopic expression of UPF1 during RV infection resulted in reduced expression of viral proteins and viral RNAs leading to diminished production of infective rotavirus particles, suggesting the anti-rotaviral role of UPF1. Finally, the delayed degradation kinetics of transfected rotaviral RNA in UPF1 and UPF2 depleted cells and the association of UPF1 and UPF2 with viral RNAs suggested that NMD targets rotaviral RNAs for degradation. Collectively, the present study demonstrates the antiviral role of NMD pathway during rotavirus infection and also reveals the underlying mechanism by which rotavirus overwhelms NMD pathway to establish successful replication.

Keywords: protein; degradation; infection; nmd pathway; nonsense mediated

Journal Title: Cellular signalling
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.