LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Major Roles for Pyrimidine Dimers, Nucleotide Excision Repair, and ATR in the Alternative Splicing Response to UV Irradiation.

Photo from wikipedia

We have previously found that UV irradiation promotes RNA polymerase II (RNAPII) hyperphosphorylation and subsequent changes in alternative splicing (AS). We show now that UV-induced DNA damage is not only… Click to show full abstract

We have previously found that UV irradiation promotes RNA polymerase II (RNAPII) hyperphosphorylation and subsequent changes in alternative splicing (AS). We show now that UV-induced DNA damage is not only necessary but sufficient to trigger the AS response and that photolyase-mediated removal of the most abundant class of pyrimidine dimers (PDs) abrogates the global response to UV. We demonstrate that, in keratinocytes, RNAPII is the target, but not a sensor, of the signaling cascade initiated by PDs. The UV effect is enhanced by inhibition of gap-filling DNA synthesis, the last step in the nucleotide excision repair pathway (NER), and reduced by the absence of XPE, the main NER sensor of PDs. The mechanism involves activation of the protein kinase ATR that mediates the UV-induced RNAPII hyperphosphorylation. Our results define the sequence UV-PDs-NER-ATR-RNAPII-AS as a pathway linking DNA damage repair to the control of both RNAPII phosphorylation and AS regulation.

Keywords: nucleotide excision; response; excision repair; pyrimidine dimers; alternative splicing; repair

Journal Title: Cell reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.