LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cortical Interneurons Differentially Regulate the Effects of Acoustic Context.

Photo by nci from unsplash

Both behavioral and neural responses to sounds are generally modified by the acoustic context in which they are encountered. As an example, in the auditory cortex, preceding sounds can powerfully suppress… Click to show full abstract

Both behavioral and neural responses to sounds are generally modified by the acoustic context in which they are encountered. As an example, in the auditory cortex, preceding sounds can powerfully suppress responses to later, spectrally similar sounds-a phenomenon called forward suppression (FWS). Whether cortical inhibitory networks shape such suppression or whether it is wholly regulated by common mechanisms such as synaptic depression or spike frequency adaptation is controversial. Here, we show that optogenetically suppressing somatostatin-positive (Sst+) interneurons weakens forward suppression, often revealing facilitation in neurons that are normally forward-suppressed. In contrast, inactivating parvalbumin-positive (Pvalb+) interneurons strengthens forward suppression and alters its frequency dependence. In a simple network model, we show that these effects can be accounted for by differences in short-term synaptic dynamics of inputs onto Pvalb+ and Sst+ interneurons. These results demonstrate separate roles for somatostatin and parvalbumin interneurons in regulating the context dependence of auditory processing.

Keywords: suppression; forward suppression; cortical interneurons; acoustic context; interneurons differentially; differentially regulate

Journal Title: Cell reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.