LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes.

Photo by ospanali from unsplash

Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) or directly reprogrammed from non-myocytes (induced cardiomyocytes [iCMs]) are promising sources for heart regeneration or disease modeling. However, the similarities and differences… Click to show full abstract

Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) or directly reprogrammed from non-myocytes (induced cardiomyocytes [iCMs]) are promising sources for heart regeneration or disease modeling. However, the similarities and differences between iPSC-CMs and iCMs are still unknown. Here, we performed transcriptome analyses of beating iPSC-CMs and iCMs generated from cardiac fibroblasts (CFs) of the same origin. Although both iPSC-CMs and iCMs establish CM-like molecular features globally, iPSC-CMs exhibit a relatively hyperdynamic epigenetic status, whereas iCMs exhibit a maturation status that more closely resembles that of adult CMs. Based on gene expression of metabolic enzymes, iPSC-CMs primarily employ glycolysis, whereas iCMs utilize fatty acid oxidation as the main pathway. Importantly, iPSC-CMs and iCMs exhibit different cell-cycle status, alteration of which influenced their maturation. Therefore, our study provides a foundation for understanding the pros and cons of different reprogramming approaches.

Keywords: cms icms; ipsc cms; gene expression

Journal Title: Cell reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.