LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MPTAC Determines APP Fragmentation via Sensing Sulfur Amino Acid Catabolism.

Photo by sharonmccutcheon from unsplash

Metabolic disorder has been suggested to underlie Alzheimer's disease (AD). However, the decisive molecular linkages remain unclear. We discovered that human Molybdopterin Synthase Associating Complex, MPTAC, promotes sulfur amino acid… Click to show full abstract

Metabolic disorder has been suggested to underlie Alzheimer's disease (AD). However, the decisive molecular linkages remain unclear. We discovered that human Molybdopterin Synthase Associating Complex, MPTAC, promotes sulfur amino acid catabolism to prevent oxidative damage from excess sulfur amino acids, which, in turn, advances fatty acid oxidation and acetyl coenzyme A (acetyl-CoA) synthesis. The association of MPTAC with Protein arginine (R) Methyltransferase 5 (PRMT5) complex and small nuclear ribonucleoprotein (SNRP) splicing factors enables SNRPs to sense metabolic states through their methylation. This promotes the splicing fidelity of amyloid precursor protein (APP) pre-mRNA and proper APP fragmentation, abnormalities of which have been observed in the platelets of AD patients. The functions of MPTAC are crucial to maintain expression of drebrin 1, which is required for synaptic plasticity, through prevention from oxidative damage. Thus, adjustment of sulfur amino acid catabolism by MPTAC prevents events that occur early in the onset of AD.

Keywords: mptac; amino acid; sulfur amino; acid catabolism

Journal Title: Cell reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.