Exercise engages signaling networks to control the release of circulating factors beneficial to health. However, the nature of these networks remains undefined. Using high-throughput phosphoproteomics, we quantify 20,249 phosphorylation sites… Click to show full abstract
Exercise engages signaling networks to control the release of circulating factors beneficial to health. However, the nature of these networks remains undefined. Using high-throughput phosphoproteomics, we quantify 20,249 phosphorylation sites in skeletal muscle-like myotube cells and monitor their responses to a panel of cell stressors targeting aspects of exercise signaling in vivo. Integrating these in-depth phosphoproteomes with the phosphoproteome of acute aerobic exercise in human skeletal muscle suggests that co-administration of β-adrenergic and calcium agonists would activate complementary signaling relevant to this exercise context. The phosphoproteome of cells treated with this combination reveals a surprising divergence in signaling from the individual treatments. Remarkably, only the combination treatment promotes multisite phosphorylation of SERBP1, a regulator of Serpine1 mRNA stability, a pro-fibrotic secreted protein. Secretome analysis reveals that the combined treatments decrease secretion of SERPINE1 and other deleterious factors. This study provides a framework for dissecting phosphorylation-based signaling relevant to acute exercise.
               
Click one of the above tabs to view related content.